Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,746 users

Integrate ((6-x)/(6+x))^(1/2)?

0 votes
From 0 to 2
asked Apr 24, 2014 in CALCULUS by anonymous

1 Answer

0 votes

Let u = √(6+x)

u² = 6 + x      => x = u² - 6

2u du = dx
 
∫ √(6−x)/√(6+x) dx

= ∫ √(6−(u²−6))/u * 2u du

= ∫ 2√(12−u²) du 

u² = 12sin²t

u = 2√3 sint

du = 2√3 cost dt

= ∫ 2√(12−12sin²t) * 2√3 cost dt

= ∫ 2 * 2√3 cost * 2√3 cost dt

= ∫ 24 cos²t dt

= ∫ (12 + 12 cos(2t)) dt

= 12t + 6 sin(2t) + C

= 12t + 12 sint cost + C

= 12 sin⁻¹(u/(2√3)) + 12 u/(2√3) √(12−u²)/(2√3) + C

= 12 sin⁻¹(u/(2√3)) + u √(12−u²) + C

= 12 sin⁻¹(√(6+x)/(2√3)) + √(6+x) √(12−(6+x)) + C

= 12 sin⁻¹(√(6+x)/(2√3)) + √(6+x) √(6−x) + C

From 0 to 2:

= 12 sin⁻¹(√8/(2√3)) + √8√4 − 12 sin⁻¹(√6/(2√3)) − √6√6

= 4√2 − 6 + 12sin⁻¹(√(2/3)) − 12sin⁻¹(1/√2)

= 4√2 − 6 + 12sin⁻¹(√(2/3)) − 12 * π/4

= 4√2 − 6 − 3π + 12sin⁻¹(√(2/3))

= 1.695875706

∫ √(6−x)/√(6+x) dx = 1.695875706

answered Apr 25, 2014 by joly Scholar

Related questions

asked Oct 31, 2014 in CALCULUS by anonymous
asked Aug 13, 2014 in CALCULUS by anonymous
asked Jun 24, 2014 in CALCULUS by anonymous
...