Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,728 users

Extremum points?

0 votes

Find the extremum points, and specify if they are maximum, minimum points or no conclusions. 

1. Y= (2x)^2 

2. Y= (x^3) - ((2x)^2) - 3 

3. Y = ln((3x)^2) + 2)

asked Nov 3, 2014 in CALCULUS by anonymous

3 Answers

0 votes

(1)

 Y= (2x)² 

 Y = 4 x²

To find the maximum / minimum points equate y' = 0 and find for x.

Y' = 8x                   [ derivative of  xn = n xn-1 ]

8x = 0

x = 0

At  x = 0 the function y has maximum / minimum point 

To find the whether the function has maximum / minimum at x = 0 , find y'' and substitute the critical point ( x=0 ) .

Now find y'' 

y'' = 8 

Since y'' > 0 , the function y has minimum value at x = 0 .

Now put x = 0 in Y = 4 x²

y = 4 *0²

y = 0

So the minimum point is (0,0) .

answered Nov 3, 2014 by friend Mentor
0 votes

(2)

 Y= x³ -(2x)² -3

 Y = x³ - 4x² -3

To find the maximum / minimum points equate y' = 0 and find for x.

Y' = 3x² -8x                   [ derivative of  xn = n xn-1 ]

3x² -8x = 0

x(3x - 8) = 0

x = 0 , x = 8/3

So the critical points are x = 0 , x = 8/3

At  x = 0 the function y has maximum / minimum point 

To find the whether the function has maximum / minimum at x = 0 , find y'' and substitute the critical point ( x=0 ) .

Now find y'' 

y'' = 6x 

y'' = 6(0) = 0

Since y'' = 0 , the function y has maximum value at x = 0 .

Now put x = 0 in Y = x³ - 4x² -3

y = 0³ - 4 *0² -3

y = -3

So the maximum point is (0,-3) .

At  x =  8/3  the function y has maximum / minimum point 

To find the whether the function has maximum / minimum at x =  8/3 , find y'' and substitute the critical point ( x= 8/3) .

Now find y'' 

y'' = 6x 

y'' = 6( 8/3) = 16

Since y'' > 0 , the function y has minimum value at x =  8/3.

Now put x =  8/3  in Y = x³ - 4x² -3

y = ( 8/3)³ - 4 *( 8/3)² -3

y = -12.48

So the manimum point is (0,-12.5) .

At (0,-3)  function y has maximum and at (0,-12.5) the function y has minimum  .

answered Nov 3, 2014 by friend Mentor
edited Nov 3, 2014 by bradely
0 votes

(3)

 Y= ln((3x)² + 2) 

 Y =ln( 9x² + 2 ) 

To find the maximum / minimum points equate y' = 0 and find for x.

Y' = 1/( 9x² + 2 )( 9x² + 2 )'                   [ derivative of  ln x = 1/x ]

Y' = 1/( 9x² + 2 )( 18x )

Y' = 18x/( 9x² + 2 )

18x/( 9x² + 2 ) = 0

18x = 0

x = 0

At  x = 0 the function y has maximum / minimum point 

To find the whether the function has maximum / minimum at x = 0 , find y'' and substitute the critical point ( x=0 ) .

Now find y''

Y' = 18x/( 9x² + 2 ) 

The quotient rule of derivative is    d [ u/v ] = (vu' - uv') / v² 

y'' = [ ( 9x² + 2 )( 18 ) - 18x ( 18x ) ]/( 9x² + 2 )²

Now put x = 0

y'' = [ ( 9(0)² + 2 )( 18 ) - 18(0) ( 18(0) ) ]/( 9(0)² + 2 )²

y'' = [(36 -0 )/4]

y'' = 9

Since y'' > 0 , the function y has minimum value at x = 0 .

Now put x = 0 in Y = ln( 6x² + 2 )

y = ln( 6(0)² + 2 )

y = ln (0+2)

y = ln 2

y = 0.693

So the minimum point is (0,0.693) .

answered Nov 3, 2014 by friend Mentor
edited Nov 3, 2014 by friend

Related questions

asked Nov 10, 2014 in CALCULUS by anonymous
asked Oct 21, 2014 in CALCULUS by anonymous
asked Sep 29, 2014 in CALCULUS by anonymous
asked Nov 24, 2014 in PRECALCULUS by anonymous
...