Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,896 users

Precal problem?

0 votes

If cos^2 x sin^4 x = A + B cos(2x)+C cos(4x) + D cos(2x) cos(4x), then 
A=____ 
B=____ 
C=____ 
D=____ 

asked Nov 20, 2014 in GEOMETRY by anonymous

1 Answer

0 votes

Consider L.H.S  cos² x * Sin4 x .

From trigonometric identity  cos² x = (1+cos 2x) / 2     ------->(1)

sin4 x = (sin² x)² ⇒ (1-cos² x)² ⇒ 1 + cos4 x - 2 cos² x .                       

Using the formula cos 4x = 1 - 8cos2 x + 8cos4 x . 

cos 4x -1 + 8cos2 x =  8cos4 x .

cos4 x = 1/8 [cos 4x -1 + 8cos2 x]

sin4 x = 1 + cos4 x - 2 cos² x  ⇒ 1 + 1/8 [cos 4x -1 + 8cos2 x] - 2 cos² x

⇒ 1 + 1/8 cos 4x -1/8 + cos2 x - 2 cos² x  ⇒ 7/8 + 1/8 cos 4x  - cos2 x

⇒  7/8 + 1/8 cos 4x  - (1+cos 2x) / 2                           [From (1)]            

⇒  7/8 + 1/8 cos 4x  - 1/2 - 1/2 cos 2x   ⇒ 3/8 + 1/8 cos 4x  - 1/2 cos 2x

Therefore sin4 x = 3/8 + 1/8 cos 4x  - 1/2 cos 2x

cos² x * Sin4 x = [(1+cos 2x) / 2][3/8 + 1/8 cos 4x  - 1/2 cos 2x ]

⇒ [1/2 + 1/2 cos 2x ][3/8 + 1/8 cos 4x  - 1/2 cos 2x ]

⇒ 3/16  + 3/16 cos 2x   + 1/16 cos 4x + 1/16 cos 4x  cos 2x   - 1/4 cos 2x - 1/4 [cos 2x ]²

⇒ 3/16  - 1/16 cos 2x   + 1/16 cos 4x + 1/16 cos 4x  cos 2x   - 1/4 [(1 + cos 4x)/2 ]                      

⇒ 3/16  - 1/16 cos 2x   + 1/16 cos 4x + 1/16 cos 4x  cos 2x    - 1/8 -1/8 cos 4x

⇒ 1/16  - 1/16 cos 2x   - 1/16 cos 4x + 1/16 cos 4x  cos 2x    ----------> (2)

Given cos² x * Sin4 x = A + B cos(2x)+C cos(4x) + D cos(2x) cos(4x)

Now compare the above with the equation (2)

So A = 1/16 , B = -1/16 , C = -1/16 and D = 1/16 .

 

answered Nov 21, 2014 by yamin_math Mentor
edited Nov 21, 2014 by bradely

Related questions

...