Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

811,139 users

Critical points?

0 votes

Find the critical values for the function f(x)= e^x +e^-x 

Find the critical values for the function g(x)= x^3lnx

asked Mar 13, 2015 in CALCULUS by anonymous

2 Answers

0 votes

(1)

Step 1:

The function is \\f\left ( x \right )=\left (e^{x}+e^{-x} \right ).

Let \\f\left ( x \right )=y.

y=e^{x}+e^{-x}\rightarrow\left ( 1 \right )

\\f\left ( x \right )=\left (e^{x}+e^{-x} \right )

Differentiate on each side with respect to x.

\\f'\left ( x \right )=\frac{d}{dx}\left (e^{x}+e^{-x} \right )

Sum rule of derivatives : .

f'\left ( x \right )=\frac{d}{dx}\left \left (e^{x} \right )+\frac{d}{dx}\left \left (e^{-x} \right )

f'\left ( x \right )=\left (e^{x} \right ) \right )+\left \left (e^{-x} \right )\frac{d}{dx}\left ( -x \right )

f'\left ( x \right )=\left e^{x} -e^{-x}.

Step 2:

To find the critical numbers of  f\left ( x \right ), equate f'\left ( x \right ) to zero.

f'\left ( x \right )=0.

e^{x} -e^{-x}=0

e^{x} -\frac{1}{e^{x}}=0

\\e^{2x}-{1} =0\\e^{2x}=1.

Apply logarithm on each side.

\\\ln e^{2x}=\ln 1 \\2x=0\\x=0.

Substitute x=0 in equation (1).

\\y=e^{0}+e^{\left (-0 \right )}

y=2.

Critical values are : x=0 and y=2.

Solution :

Critical values are : x=0 and y=2.

answered Mar 18, 2015 by sandy Pupil
0 votes

(2)

Step 1:

The function is \\g\left ( x \right )=x^{3}\ln x.

The domain of the function is (0, \infty ).

Let \\g\left ( x \right )=y.

\\y=x^{3}\ln x \rightarrow \left ( 1 \right )

\\g\left ( x \right )=x^{3}\ln x

Differentiate with respect to x on each side.

\\g'\left ( x \right )=\frac{d}{dx}\left (x^{3}\ln x \right )

Product rule of derivatives : \frac{d}{dx}\left \left (uv \right )=u\frac{dv}{dx}+v\frac{du}{dx}.

g'\left ( x \right )=x^{3}\frac{d}{dx}\left ( \ln x \right )+\left (\ln x \right )\frac{d}{dx}\left ( x^{3} \right )

g'\left ( x \right )=x^{3}\left (\frac{1}{x} \right )+\left (\ln x \right )\left ( 3x^{2} \right )

\\g'\left ( x \right )=x^{2}+ 3x^{2} \right \ln x\\g'\left ( x \right )=x^{2}\left ( 1+3\ln x \right ).

Step 2:

To find the critical numbers of  g\left ( x \right ), equate g'\left ( x \right ) to zero.

x^{2}\left ( 1+3\ln x \right )=0

x^{2}=0 and (1+3\ln x) =0

x=0 and (1+3\ln x) =0.

since x=0 is not in the domain, x=0 it is not considered.

\ln x =\frac{-1}{3}

x =e^{\frac{-1}{3}}

x=0.71.

Substitute x=0.71 in equation (1).

\\y=\left (0.71 \right )^{3}\ln \left (0.71 \right )

y=-0.122.

Critical values are : x=0.71 and y=-0.122.

Solution :

Critical values are : x=0.71 and y=-0.122.

answered Mar 18, 2015 by sandy Pupil
edited Mar 18, 2015 by sandy

Related questions

asked Jul 22, 2014 in CALCULUS by anonymous
asked Oct 11, 2014 in PRECALCULUS by anonymous
asked Oct 25, 2014 in PRECALCULUS by anonymous
...