Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

805,740 users

Calculus, 8th Edition,stewart; page 21 problem 32

0 votes
Find the domain of the function.

f(x) = (2x^3 - 5)/(x^2 + x - 6)
asked Jul 27, 2015 in CALCULUS by anonymous

1 Answer

0 votes

Step:1

The function is f(x)=\frac{2x^3-5}{x^2+x-6}.

All possible values of \large x is domain of a function.

The denominator of the function should not be zero.

x^2+x-6\neq 0

x^2+3x-2x-6\neq 0

x(x+3)-2(x+3)\neq 0

(x+3)(x-2)\neq 0

x+3\neq 0 and x-2\neq 0

x\neq -3 and x\neq 2.

Hence, the domain of function is set of all real numbers except -3 and 2.

The domain of the function is (-\infty, -3 )\cup (-3, 2)\cup (2, \infty ).

Solution:

The domain of the function is (-\infty, -3 )\cup (-3, 2)\cup (2, \infty ).

answered Jul 28, 2015 by dozey Mentor

Related questions

...