Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

805,809 users

Calculus, 8th Edition,stewart; page 23 problem 79

0 votes

If f and g are both even functions, is f + g even ? if f and g are both odd functions, is f + g odd ? What if f is even and g is odd ? justify your answers.

asked Jul 28, 2015 in CALCULUS by anonymous

1 Answer

0 votes

Step:1

Consider f and g are the even functions.

From the definitions f(-x)=f(x) and g(-x)=g(x).

Find the addition f+g.

(f+g)(-x)=f(-x)+g(-x)

(f+g)(-x)=f(x)+g(x)

(f+g)(-x)=(f+g)(x).

If f and g are the even functions, then the addition f+g is an even function.

Step:2

Consider f and g are the odd functions.

From the definitions f(-x)=-f(x) and g(-x)=-g(x).

Find the addition f+g.

(f+g)(-x)=f(-x)+g(-x)

(f+g)(-x)=\left [ (-f(x))+(-g(x)) \right ]

(f+g)(-x)=-\left [f(x)+g(x) \right ]

(f+g)(-x)=-(f+g)(x).

If f and g are the odd functions, then the addition f+g is an odd function.

answered Jul 28, 2015 by dozey Mentor

Step:3

Consider f is an even function and g is an odd function.

From the definitions f(-x)=f(x) and g(-x)=g(x).

Find the addition f+g.

(f+g)(-x)=f(-x)+g(-x)

(f+g)(-x)=f(x)+(-g(x))

(f+g)(-x)=f(x)-g(x)

This is not equal to either (f+g)(x) or -(f+g)(x).

Thus, f+g is neither even nor odd function.

Solution:

If f and g are the even functions, then the addition f+g is an even function.

If f and g are the odd functions, then the addition f+g is an odd function.

If one of the function is even and other is odd, then the addition f+g is neither even nor odd function.

Related questions

...