Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,728 users

Partial Fraction Decomposition

0 votes

asked Dec 26, 2017 in ALGEBRA 2 by MathGuy Novice

1 Answer

0 votes

The expression

5[(2 - s) / (s^2 + 2s + 1/2)]

Consider denominator

s^2 + 2s + 1/2   =   s^2 + 2s + 1/2 + 1/2 - 1/2

                          =   s^2 + 2s + 1 - 1/2

                          =   (s + 1)^2  - √(1/2)^2

                          =   (s + 1 + 1/2) (s + 1 - 1/√2)

Partial fraction decomposition

(2 - s) / [(s + 1 + 1/2) (s + 1 - 1/2)   =   [A/(s + 1 + 1/2)] + [B/ (s + 1 - 1/√2)] ------> (T)

Take the LCM

(2 - s) / [(s + 1 + 1/2) (s + 1 - 1/2)   =  {[A(s + 1 - 1/2)] + [B(s + 1 + 1/2)]} / (s + 1 + 1/2) (s + 1 - 1/√2)

2 - s   =  As + A - A/2 + Bs + B + B/√2

2 - s   =  (A + B)s + [ A + B - (1/2)(A - B)]

Compare 's' coefficients and constant terms

A + B   =   - 1  ------------> (1)

A + B - (1/2)(A - B)   =   2  ---------------------> (2)
(-1) - (1/2)(A - B)   =   2
 
(-1) - (1/2)(A - B)   =   2 + 1
(A - B)   =   -3√2-------------------------> (3)
Add equations (1) and (3)
A + B   =   - 1
(A - B)   =   -3√2
(+)  (+)       (+)
------------------------------
2A   =   -1 -  3√2
A   =   - (3√2 + 1)/2
Subtract equation (3) for equation (1)
A + B   =   - 1
(A - B)   =   -3√2
(-)  (-)        (-)
------------------------------
2B   =   3√2 - 1
B   =   (3√2 - 1)/2
Substitute A = - (32 + 1)/2 and B = (32 - 1)/2 in equation (T)

(2 - s) / [(s + 1 + 1/2) (s + 1 - 1/2)   =   [- (32 + 1)/2] (s + 1 + 1/2) + [(32 - 1)/2] (s + 1 - 1/√2)

(2 - s) / [(s + 1 + 1/2) (s + 1 - 1/2)   =   [(32 - 1)/2] (s + 1 - 1/2) - [(32 + 1)/2] (s + 1 + 1√/2) + 

answered Dec 28, 2017 by homeworkhelp Mentor

Related questions

asked Jul 18, 2014 in ALGEBRA 2 by anonymous
...