Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,752 users

please help !!!!!!!!!!!!!!!!!!!!!

+1 vote

Determine integral of 19,20,21,23,25,27

 

asked Jan 11, 2013 in CALCULUS by angel12 Scholar

6 Answers

+1 vote

19 ) ʃ ( cos x + 1/ 2 x )dx

ʃ ( cos x + 1/ 2 x )dx = ʃ cosx dx + ʃ 1 / 2 x dx                 ( ʃ (a+b )dx= ʃ adx +ʃ b dx )

                               =  sinx + 1/2 ʃ x dx                            ( ʃ x^n dx= x^n+1 / n+1 )

                              = sin x + 1 / 2 (x^2 / 2) 

 ʃ ( cos x + 1/ 2 x )dx = sinx + (x^2) / 4

answered Jan 11, 2013 by ricky Pupil
+1 vote

20)    ʃ (ex - 2 x2 )dx

        Rewrite the above equation as

      =   ʃ exdx - ʃ 2 x2dx

      =   ex  -  2 ʃx2dx                (  ʃ exdx = ex )

      =   ex -   2 x3/3               (  ʃxn dx = xn+1/n+1dx )

      =  ex -   2 x3/3

     The solution is    ʃ (ex - 2 x2 )dx  = ex -  2 x3/3

    

      I hope this will help you!!!!!

      If you are satisified then select my answer as the best!!! thank you!!!

answered Jan 11, 2013 by Johncena Apprentice
+2 votes

23)0

      ʃ (1/2(t^4) + 1/4(t^3) -t )dt

    -2                                    

               0                                           0                   0               0

Given      ʃ (1/2(t^4) + 1/4(t^3) -t )dt =  ʃ 1/2t^4 dt +ʃ 1/4t^3dt -ʃ tdt

                 -2                                         -2                 -2             -2

                                                         0                    0              0

                                             = 1 / 2 ʃ t^4dt +1 / 4 ʃ  t^3 dt - ʃ tdt

                                                        -2                   -2            -2

                                                                0                        0                0

                                         = 1 /2 [ t^5 / 5 ] + 1 / 4 [ t^4 /4 ]   -    [t^2 / 2]

                                                               -2                      -2               -2

                                      =  1 /2 ( 0^5 / 5 - ( -2^5 / 5 ) ) + 1 / 4  (0^4 / 4 -(-2^4 / 4 ) - (0^2 / 2 - (-2^2 / 2 ) 

                                     =  1/ 2 (0 - (-32 / 5 ) ) +1 /4 (0 - (-16/ 4) - ( 0 - (-4 / 2 )

Product of two same sighs is possitive

0

ʃ (1/2(t^4) + 1/4(t^3) -t )dt = (1/2) 32/ 5 + (1 / 4 ) 16 / 4 + 4 /2

-2 

0

ʃ (1/2(t^4) + 1/4(t^3) -t )dt = 16/5 + 1 +2

-2 

0

ʃ (1/2(t^4) + 1/4(t^3) -t )dt =16 / 5 + 3 /1

-2

LCM of 5,1 is 5 

0

ʃ (1/2(t^4) + 1/4(t^3) -t )dt = 16*1+3*5 / 5

-2 

0

ʃ (1/2(t^4) + 1/4(t^3) -t )dt = 16+15 / 5

-2 

0

ʃ (1/2(t^4) + 1/4(t^3) -t )dt  = 31 / 5

-2                                     

                                   

                                  

                                  

                                  

                                   

                                   

 

answered Jan 11, 2013 by ricky Pupil

image

image

image

image

image

image

image

image

image

image

Therefore the solution is 4.2.

+2 votes

                 3

      ʃ ( x² - 3 ) dx

               -2

 Rewrite the above equation as

 
               3            3

     ʃ x² dx - ʃ 3 dx

            -2            -2

 

              3           3

  [x³/3]  - [3x]            (   ʃxn dx = xn+1/n+1dx   ; ʃ dx = x )

            -2          -2

    Substitute 3 and -2 respecttively and subtract them

    [(3)³/3] - [(-2)³/3] - [3(3) -3 (-2)]       

    [(27/3)-(-8/3)] - [9 +6]

    [(27/3) + (8/3) - 15]

    [(27 + 8 - 45)/3]

    (35-45)/3

     -10/3

                                          3

 The solution is  ʃ ( x² - 3 ) dx  =  -10/3

                                        -2

 

I hope this will help you!!!!!

answered Jan 11, 2013 by Johncena Apprentice
+2 votes

                2

      ʃ (2x-3)  (4 x² +1)  dx

               0

                2                                    2                              2                        2                             2  

      ʃ (2x-3)  (4 x² +1)  dx =  ʃ ( 2x)* (4x^2 ) dx + ʃ (2x) * (1) dx + ʃ ( -3 )* (4x^2 ) dx+ ʃ (-3)* (1)dx

               0                                    0                              0                       0                              0

                                                 2                      2                2                         2      

                                      =        ʃ ( 8x^3 ) dx + ʃ ( 2x)dx +  ʃ ( - 12x^2 ) dx + ʃ ( -3) dx                (   ʃxn dx = xn+1/n+1)

                                                0                     0                  0                         0  

                                                     2                  2                   2       2 

                                   = 8 (x^4 / 4) + 2 ( x^2 / 2 ) -12 (x^3 / 3 ) - 3(x)

                                                     0                  0                    0        0

                                  = 8 ( (2)^4 / 4 - (0^4) / 4  ) + 2 ( (2^2 / 2 - 0^2 ) -12 ( 2^3 / 3 - 0^3 / 3 ) - 3 ( 2-0 )

                                 = 8( 16 /4 - 0 ) -12 (8 / 3 ) +2 ( 4 / 2 ) -3 (2 )

                                 =  8 (4)  -12 (8 / 3 ) + 2 (2) -6

                                = 32 -96 / 3 +4 -6

     LCM of 3 ,1 is 3

                               = 32*3 -96 +4*3 -6*3 / 3

                              = 96-96+12-18 / 3

                              = -6 / 3 

     2

   ʃ(2x-3 ) (4x^2 +1 )    = -2

    0                                                      

                             

                                                          

 

                            

 

answered Jan 12, 2013 by ricky Pupil
0 votes

The integral expression is

image

image

image

image

image

answered Jun 30, 2014 by casacop Expert

Related questions

asked Nov 13, 2014 in CALCULUS by anonymous
asked Sep 24, 2014 in CALCULUS by anonymous
asked Sep 5, 2014 in CALCULUS by anonymous
asked May 15, 2015 in CALCULUS by anonymous
asked May 6, 2015 in CALCULUS by anonymous
asked Jul 26, 2014 in CALCULUS by anonymous
asked Jun 26, 2014 in CALCULUS by anonymous
...