Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,728 users

binomial Expansion using Pascal's triangle?

0 votes
How do I use Pascal's Triangle to expand these two binomials?
 
(x-6) ^ 6

(2x -3) ^ 4

 
Please explain the process if possible. Thanks.

 

asked Mar 3, 2014 in ALGEBRA 2 by andrew Scholar

2 Answers

0 votes

 1 )   ( x - 6 ) 6

Pascals triangle : - 

     

                                       1
                   1         1
              1        2       1
         1      3        3      1
      1     4        6        4       1 
   1    5      10     10       5       1  
1    6     15    20      15      6       1

( x - 6 ) 6 = x+ 6 x ( - 6 ) +   15 x 4 ( - 6 ) 2+ 20 x 3 ( - 6 ) +   15 x 2 ( - 6 ) 4 +6 x ( - 6 )5    + ( - 6 )6 

( x - 6 ) 6 = x - 36 x 5   +   15x 4 ( 36 )  -  20 x 3 ( 6 ) +   15 x 2 ( 6 ) 4 -  6 x (  6 )5    + (  6 )6

( x - 6 ) x - 36 x 5   + 540 x   -  4320 x 3 +   19440x 2  -  46656 x + 46656.

 2 )

 ( 2 x - 3 )                                                

   Pascals triangle : -
          

                   1         1
              1        2       1
         1      3        3      1
      1     4        6        4       1 

 

( 2 x - 3 ) 4 =( 2 x )+ 4 (2 x) ( - 3) +   6 (2 x )2 ( - 3) 2+ 4 (2 x ) +(- 3 )3   + 1 *(- 3 )4

( 2 x - 3 ) 4 = 16 x- 96 x+ 21 6 x2  -  216 x + 81.

answered Apr 10, 2014 by friend Mentor
0 votes

The following expanded powers of (a + b)n, where a + b is any binomial and n is a whole number. Look for patterns.

Each expansion is a polynomial. There are some patterns to be noted.

1. There is one more term than the power of the exponent, n. That is, there are terms in the expansion of (a + b)n.

2. In each term, the sum of the exponents is n, the power to which the binomial is raised.

3. The exponents of a start with n, the power of the binomial, and decrease to 0. The last term has no factor of a. The first term has no factor of b, so powers of b start with 0 and increase to n.

4. The coefficients start at 1 and increase through certain values about "half"-way and then decrease through these same values back to 1.

In mathematics, Pascal's triangle is a triangular array of the binomial coefficients.

Pascals triangle : - (x + y)n = (x - 6)6.

n=0----->                               1
n=1----->                         1         1
n=2----->                   1         2       1
n=3----->              1         3        3         1
n=4----->          1       4         6        4         1 
n=5----->      1      5       10       10       5       1  
n=6----->  1     6      15        20      15       6       1

(x - 6)6 = x6 + 6x5(- 6) + 15x4(- 6)2 + 20x3(- 6)3 + 15x2 (- 6)4 + 6x(- 6)5 + (- 6)6

(x - 6)6 = x6 - 36x5 + 15x4(36) - 20x3(6)3 + 15x2(6)4 - 6x(6)5 + (6)6

(x - 6)6 = x6 - 36x 5 + 540x4 - 4320x3 +19440x2 - 46656x + 46656.

2 )(2x - 3)4.

Pascals triangle : -  (x + y)n = (2x - 3)4.

n=0----->                               1
n=1----->                         1         1
n=2----->                   1         2       1
n=3----->              1         3        3         1
n=4----->          1       4         6        4         1
 
(2x - 3)4 = (2x )4 + 4 (2x)3(- 3) + 6(2x )2 (- 3) 2+ 4(2 x ) + (- 3 )3 + 1(- 3 )4

(2x - 3)4 = 16 x4 - 96 x3 + 21 6x2 - 216x + 81.

 

answered Apr 11, 2014 by steve Scholar

Related questions

...