Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

816,765 users

State if the given functions are inverses

0 votes

State if the given functions are inverses

asked Oct 26, 2018 in ALGEBRA 2 by anonymous

1 Answer

0 votes

Two functions f and g are inverse functions if and only if both of their

compositions are the identity functions.

That means [f o g](x) = x and [g o f](x) = x.

1)

g(x)  =  4 - (3x)/2   and  f(x)  =  x/2 + 3/2

f o g (x)  =  f( g(x) )

              =  f( 4 - (3x)/2)

              =  [ 4 - (3x)/2 ]/2 + 3/2

              =  4/2 - (3x)/4 + 3/2

              =  (4 + 3)/2 - (3x)/4

              =  7/2 - (3x)/4

g o f (x)  =  g ( (f(x) )

              =  g(  x/2 + 3/2 )

              =  4 - 3[x/2 + 3/2]/2

              =  4 - 3[x/4 + 3/4]

              =  4 - (3x)/4 - 9/4

              =  (16 - 9)/4 - (3x)/4

              =  7/4 - (3x)/4

Here, f o g (x) and g o f (x) are not equal

Hence, those are not an inverse functions.

 

3)

f(n)  =  (-16 + n) / 4  and g(n)  =  4n + 16

f o g (n)  =  f( g(n) )

              =  f( 4n + 16)

              =  [ - 16 + ( 4n + 16) ] / 4

              =  [ 4n ] / 4

              =  n

g o f (n)  =  g(  f(n) )

              =  g( (-16 + n) / 4 )

              =  4[(-16 + n) / 4 )] + 16

              =  -16 + n + 16

              =  n

Here, f o g (n)  =  g o f (n) = n

Therefore f(n) and g(n) are identitity functions

Hence, f(n and g(n) are inverse functions.

Answer :

1)  f(x) and g(x) are not an inverse functions.

3)  f(n and g(n) are inverse functions.

answered Oct 27, 2018 by homeworkhelp Mentor
reshown Jun 1, 2024 by bradely

Related questions

asked Sep 4, 2014 in ALGEBRA 2 by anonymous
...