\"\"

\

The equation is 4z + b = 2z + c.

\

\

According to subtraction property of equality; if a = b than a \"\" c = b \"\" c. 

\

4z + b \"\" 2z = 2z + c \"\" 2z                 (Subtract 2z from each side)

\

4z \"\" 2z + b = c                                  (Additive inverse property:2z \"\" 2z =  0)

\

2z + b = c                                           (Subtract: 4z \"\" 2z = 2z)

\

2z + b\"\"b = c\"\"b                                (Subtract b from each side)

\

2z = c\"\"b                                            (Additive inverse property: b \"\" b =  0)                                     

\

\"\"

\

\"\"                                      (Divide each side by 2)

\

\"\"                                          (Cancel common terms)\"\"

\

Verify:

\

To check the solution, substitute \"\" in original equation. \ \

\

\"\"

\

\"\"                   (Cancel common terms)

\

\"\"                      (Divide:\"\")

\

 \"\"                      (Distributive property: a(b\"\"c) = ab\"\"ac)

\

Compare the values, the equation is true.

\

\"\"

\

The value of z is \"\".

\