\"\"

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative, the minimum point of the

\

graph is where \"\".

\

\"\"

\
\

The original function is \"\" \ \

\

Set original function \"\"

\

 \"\"            

\

\"\"                        

\

\"\"         (Add 10 to each side)

\

\"\"                   (Additive inverse property: \"\")

\

\"\"                               (Additive identity property: \"\")\"\"

\

Next make at table, fill out the table with values for x > 10 and  x < 10.

\

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

f(x) = |x - 10|

\
\

x

\
\

 f(x)

\
\

-10

\
\

20

\
\

-5

\
\

15

\
\

0

\
\

10

\
\

5

\
\

5

\
\

10

\
\

0

\
\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

 

\

\"absolute\"\"