\"\"

\

a)First find the minimum point of the graph.

\

Since absolute value function can not be negative, the minimum point of the

\

graph is where \"\".

\

 

\

\"absolute\"\"

\
\

b) The function \"\" and \"\" 

\

The original function is \"\"

\

Set original function \"\"

\

 \"\"            

\

\"\"               (Subtract 3 from each side)

\

\"\"                     (Additive inverse property: \"\")

\

\"\"                             (Additive identity property: \"\") \ \ \"\"

\

Next make at table, fill out the table with values for \"\".

\

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

f(x) = |2x|

\
\

x

\
\

 f(x)

\
\

-2

\
\

4

\
\

-1

\
\

2

\
\

0

\
\

0

\
\

1

\
\

2

\
\

2

\
\

4

\
\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

 

\

\"absolute

\

Observe the graphs, both graphs have same shape and points on \"\" are 3 units higher than the points on \"\".

\

The graph of  \"\" is the graph of \"\" and translated 3 units up.\"\"

\

c)The function \"\" and \"\" \ \

\

The original function is \"\"

\

Set original function \"\"

\

 \"\"

\

\"\"                   (Divide each side by 2)

\

\"\"                           (Cancel common terms)

\

\"\"                              (Divide: \"\")

\

\"\"                  (Add 1 to each side)

\

\"\"                        (Additive inverse property: \"\")

\

\"\"                                    (Additive identity property: \"\") \"\"

\

Next make at table, fill out the table with values for \"\".

\

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

f(x) = |2x|+ 3

\
\

x

\
\

 f(x)

\
\

-2

\
\

7

\
\

-1

\
\

5

\
\

0

\
\

3

\
\

1

\
\

5

\
\

2

\
\

7

\
\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

 

\

\"absolute

\

Observe the graphs, both graphs have same shape and points on \"\" are 2 units right side than the points on \"\".

\

The graph of  \"\" is the graph of \"\" and translated 3 units right.\"\"

\

d)The function \"\" and \"\" \ \

\

The original function is \"\"

\

Set original function \"\"

\

 \"\"           (Subtract 3 from each side)

\

\"\"               (Additive inverse property: \"\")

\

\"\"                       (Additive identity property: \"\")

\

The original function is \"\" \"\"

\

Next make at table, fill out the table with values for \"\".

\

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

f(x) = |2(x-1)|

\
\

x

\
\

 f(x)

\
\

-2

\
\

6

\
\

-1

\
\

4

\
\

0

\
\

2

\
\

1

\
\

0

\
\

2

\
\

2

\
\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points

\

 

\

\"absolute

\

Observe the graphs, both graphs have same shape and points on \"\" \ \ are 3 units higher than and 2 units rihgt side the points on \"\".

\

The graph of  \"\" \ \ is the graph of \"\" and translated 3 units up and 2 units rihgt.\"\"

\

 The graph of  \"\" \ \ is the graph of \"\" and translated 3 units up and 2 units rihgt.