\"\"

\

The equation is

\

\"\"

\

\

The matrices have the same dimensions and the corresponding elements are equal. Form the two linear equations by writing the sentences to show the equality.

\

\"\"              Equation(1)

\

\"\"                    Equation(2)

\

\"\"

\

Solve the system using substitution method.

\

The first equation is \"\".

\

According to subtraction property of equality: if \"\", then \"\"

\

\"\"                        (Subtract X from each side).

\

\"\"                        (Apply Commutative property: a + b = b + a)

\

\"\"                                    (Apply Additive inverse property: x - x = 0)

\

\"\"                               (Divide each side by 3).

\

\"\"                                    (Cancel common terms)

\

\"\"

\

Substitute \"\"in second equation.

\

\"\"

\

\"\"            (Multiply each side by 3).

\

\"\"                           (Multiply the factors).

\

\"\"                                        (Simplify).

\

According to addition property of equality:  if \"\", then \"\".

\

\"\"                       (Add 13 to each side).

\

\"\"                                              (Add: \"\").

\

\"\"                                         (Divide each side by 8).

\

\"\"                                                  (Divide: \"\").

\

\"\"

\

Substitute \"\" in first equation.

\

\"\"                       

\

According to subtraction property of equality: if \"\", then \"\"

\

\"\"                       (Subtract 2 from each side)

\

\"\"                       (Apply Commutative property: a + b = b + a)

\

\"\"                                   (Apply Additve inverse property: x - x = 0)

\

\"\"                                          (Add: - 13 - 2 = -15)

\

\"\"                                     (Divide each side by 3)

\

\"\"                                              (Simplify)

\

\"\"

\

The solution is \"\".

\