\"\"

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative, the minimum point of the

\

graph is where \"\".

\

The original function is \"\".

\

Set original function \"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"                    (Distributive property: ab +ac = a(b + c))

\

\"\"  (Multiply each side by negative one)

\

\"\"                  (Product of two same signs is positive)

\

\"\"                           (Zero product property: \"\")\"\"

\

According to subtraction property of equality: if a = b, then a \"\" c = b \"\" c.

\

\"\"               (Subtract 3 from each side)

\

\"\"                           (Additive invrese property: \"\")

\

\"\"                             (Additive identity property: \"\")

\

\"\"

\

Next make at table, fill out the table with values for \"\".

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

g(x) = |-x - 3|

\
\

x

\
\

 g(x)

\
\

3

\
\

0

\
\

1

\
\

2

\
\

0

\
\

 3

\
\

1

\
\

 4

\
     3       6
\

\"\"

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

\"absolute

\

\"\"

\

\"absolute