\"\"

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative,

\

the minimum point of the graph is where \"\".\"\"

\

The original function is \"\".

\

Set original function \"\"

\

\"\"

\

\"\"

\

\"\"               (Add 2 to each side)

\

\"\"                     (Additive inverse property: \"\")

\

\"\"                                (Additive identity property: \"\")\"\"

\

The original function is \"\".

\

Set original function \"\"

\

\"\"

\

\"\"

\

\"\"                (subtract 4 from each side)

\

\"\"                      (Additive inverse property: \"\")

\

\"\"                             (Additive identity property: \"\")\"\"

\

Next make at table, fill out the table with values for x > -2 and  x < -2.

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

f(x) = |x+4|

\
\

f(x) =

\
\

|x-2|

\
\

x

\
\

 f(x)

\
\

x

\
\

f(x)

\
\

-2

\
\

2

\
\

 

\

-2

\
\

 

\

4

\
\

-1

\
\

3

\
\

 

\

-1

\
\

 

\

3

\
\

0

\
\

4

\
\

 

\

0

\
\

 

\

2

\
\

1

\
\

5

\
\

 

\

1

\
\

 

\

1

\
\

2

\
\

6

\
\

 

\

2

\
\

 

\

0

\
\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

\"absolute

\

Observe the graphs, both graphs have same shape and

\

points on \"\" and \"\" have  graphs related point (-1,3).\"\"

\

The two graphs have in common point is (-1,3). Yes

\

b)Yes,