\"\"

\

The equations are \"\".

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative,

\

the minimum point of the graph is where \"\".\"\"

\

The original function is \"\".

\

Set original function \"\"

\

\"\"

\

\"\"          (Subtract 7 from each side)

\

\"\"                (Apply additive inverse property: \"\")

\

\"\"                        (Apply additive identity property: \"\")

\

\"\"           (Multiply each side by negative one)

\

\"\"                               (Product of two same signs is positive)\"\"

\

The original function is \"\".

\

Set original function \"\"

\

\"\"

\

\"\"

\

\"\"                (Add 3 to each side)

\

\"\"                     (Apply additive inverse property: \"\")

\

\"\"                                 (Apply additive identity property: \"\")\"\"

\

Next make at table, fill out the table with values for x > 3 and  x < 3, \"\".

\

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\"\" \

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

5

\
\

\"\"

\
\

6

\
\

0

\
\

3

\
\

0

\
\

7

\
\

2

\
\

1

\
\

1

\
\

6

\
\

4

\
\

1

\
\

2

\
\

5

\
\

\

\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

\"absolute

\

Observe the graphs, both graphs have different shapes and

\

points on \"\" and \"\" have common point is \"\".\"\"

\

The graphs of  \"\" and \"\" have in common point is \"\".