\"\"

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative, the minimum point of the

\

graph is where \"\".\"\"

\
\

The original function is \"\"

\

Set original function \"\"

\

 \"\"

\

\"\"              (Subtract 7 from each side)

\

\"\"                    (Additive inverse property: \"\")

\

\"\"                            (Additive identity property: \"\")

\

\"\"              (Multiply each side by negative one)

\

\"\"                                  (Product of two same signs is positive) \"\"

\
\

The original function is \"\"

\

Set original function \"\"

\

 \"\"

\

\"\"

\

\"\"                (Add 3 to each side)

\

\"\"                      (Additive inverse property: \"\")

\

\"\"                                  (Additive identity property: \"\")\"\"

\

Next make at table, fill out the table with values for x > 3 and  x < 3,\"\".

\

\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

 

\

f(x) = |x - 3|

\
\

 

\

f(x) = -|x|+7

\
\

x

\
\

 f(x)

\
\

 

\

X

\

 

\
\

 

\

f(x)

\
\

-4

\
\

7

\
\

-2

\
\

7

\
\

-2

\
\

5

\
\

-1

\
\

6

\
\

0

\
\

3

\
\

0

\
\

5

\
\

2

\
\

1

\
\

1

\
\

4

\
\

4

\
\

1

\
\

2

\
\

3

\
\

\

\

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

 

\

\"absolute

\

Observe the graphs, both graphs have different shapes and points on \"\" and \"\"

\

have common point is \"\".\"\"

\

\

The graphs of  \"\" and \"\" have in common point is \"\".