\"\"

\

The equation is \"\".

\

The matrices have the same dimensions and the corresponding elements are equal. Form the two linear equations by writing the sentences to show the equality.

\

\"\"              Equation(1)

\

\"\"                    Equation(2)

\

\"\"

\

Solve the system using substitution method.

\

The first equation is \"\".

\

Apply subtraction property of equality: If \"\", then \"\".

\

\"\"           (Subtract x from each side)

\

Apply commutative property of addition: a + b = b + a.

\

\"\"

\

\"\"                        (Apply Additive inverse property: \"\")

\

\"\"                   (Divide each side by 3)

\

\"\"                        (Cancel common terms)\"\"

\

Substitute \"\"in second equation.

\

\"\"

\

Apply multiplication property of equality: if \"\", then \"\".\"\"     (Multiply each side by 3)

\

\"\"                       (Cancel common terms)

\

\"\"                           (Multiply: \"\")

\

\"\"                                 (Subtract: \"\")\"\"

\

Apply addition property of equality:  if \"\", then \"\".

\

\"\"      (Add 13 to each side)

\

\"\"                        (Apply Additive inverse property: \"\"13 + 13 = 0)

\

\"\"                               (Add: \"\")

\

Apply division property of equality; if \"\", then \"\".

\

\"\"                          (Divide each side by 8)

\

\"\"                                    (Divide: \"\")\"\"

\

Substitute \"\" in first equation.

\

\"\"

\

According to subtraction property of equality: if \"\", then \"\".

\

\"\"              (Subtract 2 from each side)

\

Apply commutative property of addition: a + b = b + a.

\

\"\"

\

\"\"                           (Apply Additve inverse property: 2\"\"2 = 0)

\

\"\"                                 (Add: \"\")

\

\"\"                            (Divide each side by 3)

\

\"\"                                      (Simplify)

\

\"\"

\

The solution is \"\".