\"\"

\

\"\".

\

Since the matrices are equal, the corresponding elements are equal.

\

Write two linear equations.

\

3x + 2 = 23

\

– 4y – 1 = 15\"\"

\

First consider the equation 1.

\

Apply subtraction property of equality: if \"\", then \"\".

\

3x + 2 – 2 = 23 2          (Subtract 2 from each side)

\

3x = 23 – 2                       (Apply additive inverse property: 2 – 2 = 0)

\

3x = 21                             (Subtract: 23 – 2 = 21)\"\"

\

Apply division property of equality; if \"\", then \"\".

\

\"\"                       (Divided each side by 3)

\

\"\"                            (Cancel common terms)

\

x = 7                                 (Divide: \"\")\"\"

\

Next consider the second equation.

\

Apply addition property of equality:  if \"\", then \"\".

\

4y 1 = 15                (Add 1 to each side)

\

4y 1 + 1 = 15 + 1   (Apply additive inverse property: – 1 + 1 = 0)

\

4y = 16                      (Add: 15 + 1 = 16)\"\"

\

Apply division property of equality; if \"\", then \"\".

\

\"\"                (Divided each side by negative 4)

\

\"\"                     (Cancel common terms)

\

y = 4                          (Divide: \"\")\"\"

\

The solution is (7, – 4).