\"\"

\

\"\"

\

Since the matrices are equal, the corresponding elements are equal.

\

Write two linear equations.

\

x + 3y = –22

\

2x – y = 19

\

\"\"

\

Consider the second equation

\

2x – y=19

\

2x – y + y= 19 + y

\

\"\"

\

\"\"

\

Substitute \"\" in x + 3y = – 22      

\

\"\"

\

\"\"              

\

19 + y + 6y = 44                               (Multiply each side by 2)

\

19 + 7y = 44                                     (Add: 6y + y = 7y)

\

19 -19 + 7y = 44 19                     (Subtraction 19 from each side)

\

7y = 63                                              (Subtract: 44 19 = 63)

\

\"\"                                        (Divide each side by 7)

\

y = 9                                                   (Simplify)

\

\"\"

\

To find the value of x, substitute – 9 for y in either equation.

\

2x y = 19                 

\

2x + 9 = 19                                           (Substitute –9 for y)

\

2x + 9 – 9 = 19 – 9                             (Subtract 9 from each side)

\

2x = 10                                                 (Subtract: 19 – 9 = 10)

\

\"\"                                        (Divide each side by 2)

\

x = 5                                                       (Simplify)

\

\"\"

\

The solution is (5,-9)

\