\"\"\"\"\"\"

\

The equation is \"\".

\

According to division property of equality: if \"\", then \"\".

\

\"\"                   (Divide each side by 7)

\

\"\"                        (Cancel common terms)

\

\"\"                             (Divide: \"\")

\

Write two cases:

\

Case-1: a = b

\

\"\"

\

Case-2: a = \"\"b

\

\"\"\"\"

\

Solve the equation for Case-2.

\

According to addition property of equality: if a = b, then a + c = b + c.

\

\"\"          (Add 13 to each side)

\

\"\"                          (Apply Additive inverse property: \"\")

\

\"\"                                (Add: 5 + 13 = 18)

\

\"\"                           (Divide each side by 4)

\

\"\"                                (Cancel common terms)\"\"

\

Check:

\

To check the solution, substitute \"\" in original equation.

\

\"\"

\

\"\"                   (Cancel common terms)

\

\"\"                             (Subtract: \"\")

\

\"\"                              (Absolute value: |5| = 5)

\

35 = 35                                (Multiply: \"\")

\

Compare the values the equation is true. \"\" is a solution.

\

\"\"

\

Solve the equation for Case-2.

\

According to addition property of equality: if a = b, then a + c = b + c.

\

\"\"       (Add 13 to each side)

\

\"\"                       (Apply Additive inverse property: \"\")

\

\"\"                                   (Add: -5 + 13 = 8)

\

\"\"                              (Divide each side by 4)

\

\"\"                                   (Cancel common terms)

\

\"\"                                     (Divide: \"\")\"\"

\

Check:

\

To check the solution, substitute \"\" in original equation.

\

\"\"

\

\"\"                   (Multiply: \"\")

\

\"\"                        (Subtract: \"\")

\

\"\"                           (Absolute value: |\"\"5| = 5)

\

35 = 35                             (Multiply: \"\")

\

Compare the values the equation is true. \"\" is a solution.

\

\"\"

\

The solutions are \"\" and 2. The solution set is \"\".