\"\" \"\"

\

The given line is \"\".

\

Above line is slope - intercept form \"\".

\

So, given line has a slope of(\"\") = \"\"4.

\

So, a line parallel to it has a slope of  \"\".

\

Because you know the slope and a point on the line,

\

Use point - slope form \"\" to write an equation of the line.

\

Let \"\"\"\" and slope(\"\") = \"\"4.

\

\"\"      (Substitute \"\"5 for \"\"\"\"3 for \"\" and \"\" = \"\"4)\"\"

\

Rewrite in slope - intercept form \"\".

\

\"\"                   (Product of two same signs is positive)

\

\"\"                 (Apply distributive property: \"\")

\

\"\"                    (Multiply: \"\") \"\"

\

Apply subtraction property of equality:If a = b then a \"\" c = b \"\" c.

\

\"\"         (Subtract 5 from each side)

\

\"\"               (Apply additive inverse property: \"\")

\

\"\"                     (Apply additive identity property: \"\")

\

\"\"                          (Subtract: \"\")\"\"

\

Check:

\

To check the solution substitute \"\" = \"\" in \"\".

\

\"\"

\

\"\"                           (Multiply: \"\")

\

\"\"                                 (Subtract: \"\")

\

The equation satisfies the condition.

\

So,The equation of the line is  \"\". \"\"

\

The equation of the line is  \"\".