\"\"

\

The given vertices of the triangle are \"\".

\

Find an equation of perpendicular bisector of the side \"\".

\

The midpoint of \"\".

\

The slope of \"\" is \"\".

\

Perpendicular bisector is normal to \"\" and passes through the midpoint of \"\".

\

So, slope of perpendicular bisector of \"\" is 6.

\

\"\"                 (Point-slope form)

\

\"\"                      (Substitute \"\",\"\")

\

\"\"                              (Distributive property)

\

\"\"                           (Subtract y from each side)\"\"

\

Find an equation of perpendicular bisector of the side \"\".

\

The midpoint of \"\".

\

The slope of \"\" is  \"\".

\

Perpendicular bisector is normal to \"\" and passes through the midpoint of \"\".

\

So, slope of perpendicular bisector of \"\" is \"\".

\

\"\"                (Point-slope form)

\

\"\"       (Substitute \"\",\"\")

\

\"\"                   (Product two same signs is positive)

\

\"\"                   (Multiply each side by 7)

\

\"\"                      (Distributive property)

\

\"\"                            (Subtract 4 from each side)

\

\"\"                         (Subtract 7y from each side)\"\"

\

Solve a system of equations to find the point of intersection of the perpendicular bisectors\"\"

\

So, \"\".\"\"

\

Use x value to determine the y-coordinate.

\

\"\"                           (Write the equation)

\

\"\"                 (Substitute \"\")

\

\"\"                    (Add \"\"to each side)

\

\"\"                                 (Simplify)

\

So, \"\"\"\"

\

The coordinates of circumcenter are \"\".