\"\"

\

The given vertices of the triangle are \"\".

\

Find an equation of perpendicular bisector of the side \"\".

\

The midpoint of \"\".

\

The slope of \"\" is \"\".

\

Perpendicular bisector is normal to \"\" and passes through the midpoint of \"\".

\

So, slope of perpendicular bisector of \"\" is \"\".

\

\"\"                          (Point-slope form)

\

\"\"                               (Substitute \"\",\"\")

\

\"\"                               (Multiply each side by 3)

\

\"\"                                  (Distributive property)

\

\"\"                                        (Add 4 to each side)

\

\"\"                                    (Subtract 3y from each side)\"\"

\

Find an equation of perpendicular bisector of the side \"\".

\

The midpoint of \"\".

\

The slope of \"\" is  \"\".

\

Perpendicular bisector is normal to \"\" and passes through the midpoint of \"\".

\

So, slope of perpendicular bisector of \"\" is \"\".

\

\"\"                    (Point-slope form)

\

\"\"                         (Substitute \"\",\"\")

\

\"\"                         (Multiply each side by 2)

\

\"\"                            (Distributive property)

\

\"\"                                 (Add 3 to each side)

\

\"\"                              (Subtract 2y from each side)\"\"

\

Solve a system of equations to find the point of intersection of the perpendicular bisectors.\"\"

\

\"\"

\

\"\"                                      (Divide each side by negative 5)

\

So, \"\"

\

\"\"

\

Use y value to determine the x-coordinate.

\

\"\"                            (Write the equation)

\

\"\"                    (Substitute \"\")

\

\"\"                          (Simplify)

\

\"\"                          (Add \"\"to each side)

\

\"\"                                   (Simplify)

\

\"\"                                       (Divide each side by 3)\"\"

\

The coordinates of circumcenter are \"\".