\"\"

\

From the given right triangle CD is the altitude.

\

In a triangle, the measure of an altitude drawn from the vertex of right angle to its hypotenuse

\

is the geometric mean between the measures of the two segments of the hypotenuse.

\

So, the measure of the altitude CD is the geometric mean of BD and DA.\"\"

\

Find the geometric mean of BD and DA.

\

Geometric mean is positive number x of two positive numbers where the proportion

\

a : x = x : b is true. The proportion can be written as fractions  \"\".

\

Write the proportion from the definition of geometric mean.

\

\"\"

\

\"\"                              (Substitute \"\")

\

\"\"                       (Apply cross product property)

\

\"\"                               (Multiply: \"\"\"\")

\

\"\"                             (Take the positive square root of each side)

\

\"\"                                (\"\")\"\"

\

Find AB.

\

\"\"                (Apply segment addition postulate)

\

In a right triangle, if an altitude is drawn from the vertex of the right angle to its hypotenuse,

\

then the measure of a leg of the triangle is the geometric mean between the measures of the

\

hypotenuse and the segment of the hypotenuse adjacent to that leg.\"\"

\

Write the proportion for the leg AC.

\

\"\"

\

\"\"                           (Substitute \"\")

\

\"\"                     (Apply cross product property)

\

\"\"                                (Multiply: \"\"\"\")

\

\"\"                              (Take the positive square root of each side)

\

\"\"                                (\"\")\"\"

\

The value of x is 4.9 and y is 5.7.