\"\"

\

The equation is \"\".

\

Let \"\".

\

Therefore \"\".

\

a. Determine whether the function has maximum or minimum value:

\

For  \"\",

\

Standard form equation \"\".

\

Compare the above two equations, \"\".

\

Because a is positive the graph opens up, so the function has a minimum value.\"\"

\

b. State the maximum or minimum value of the function:

\

The minimum value is y-coordinate of the vertex.

\

The x-coordinate of the vertex is  \"\".

\

\"\"                            (Substitute \"\")

\

\"\"                                (Multiply: \"\")

\

\"\"                                     (Divide: \"\")\"\"

\

\"\"             (Original equation)

\

\"\" (Substitute \"\")

\

\"\"    (Evaluate powers: \"\")

\

\"\"        (Multiply: \"\")

\

\"\"               (Multiply: \"\")

\

\"\"                      (Subtract: \"\")

\

\"\"                                 (Add: \"\")

\

The minimum value is \"\".\"\"

\

c. State the domain and range of the function:

\

The domain is all real numbers. The range is all real numbers greater than or equal to the minimum value, or \"\".\"\"

\

a. a is positive the graph opens up, so the function has a minimum value.

\

b. The minimum value is \"\".

\

c. The domain is all real numbers. The range is all real numbers greater than or equal to the minimum value, or \"\".