\"\"

\

The standard form of quadratic equation in x - variables is \"\", where \"\".

\

The equation is \"\".

\

Add 8 to each side.

\

\"\"

\

\"\"

\

Graph the related function \"\".

\

\"The

\

Observe the graph, the graph intersect the x - axis at two points. So the equation has two solutions. The graph intersect the x - axis between \"\" and between \"\".

\

Make a table using an increment of 0.1 for the x - values located between \"\" and between \"\". Look for a change in the signs of the function value that is closest to zero is the best approximation for a zero of the function.\"\"

\

Make a table using an increment of 0.1 for the x - values located between \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

 \"\"

\

Make a table using an increment of 0.1 for the x - values located between \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

Observe two tables, the function value that is closest to zero when the sign changes is \"\". Thus, the roots are approximately  \"\".\"\"

\

The roots are approximately  \"\".