\"\"

\

The sum of four times a number and six times a second number is \"\".

\

Let \"\" be a first number and \"\" be a second number.

\

Hence the equation is \"\".

\

The difference of five times the second number and three times of a first number is \"\".

\

Hence the equation is \"\".

\

The system of equations are \"\" and \"\".

\

\"\"

\

Solve the system of equations by elimination method.

\

Step 1:

\

Multiply each equation with a suitable multiplier.

\

Case (i):

\

\"\"                      (First equation)

\

\"\"            (Multiply each side by \"\")

\

\"\"               (Multiply)

\

Case (ii):

\

\"\"                   (Second equation)

\

\"\"         (Multiply each side by \"\")

\

\"\"            (Multiply)

\

Step 2:

\

Add the equations to eliminate the one variable.

\

\"\"

\

\"\"                    (Divide each side by \"\")

\

\"\"                                  (Cancel common terms)

\

Step 3:

\

Substitute \"\" into any original equation to find \"\" value.

\

\"\"                     (Second equation)

\

\"\"                  (Substitute \"\")

\

\"\"                    (Multiply)

\

\"\" (Subtract \"\" from each side)

\

\"\"                           (Apply additive inverse property: \"\")

\

\"\"                   (Divide each side by \"\")

\

\"\"                             (Cancel common terms)

\

Therefore, the solution is \"\".

\

\"\"

\

The solution of the system is \"\".