\"\"

\

The sum of the two numbers is \"\" and product is \"\".

\

Let \"\" and \"\"be a number.

\

Hence the sum of the two numbers is \"\" such that the equation is  \"\".

\

The product of the two numbers is \"\" such that the equation is \"\".

\

\"\"                       (Substitute  \"\")

\

\"\"                         (Distributive property)

\

\"\"        (Add \"\" on each side)

\

\"\"                   (Apply additive inverse property: \"\")

\

Consider the related function \"\".

\

The standard form of quadratic function \"\", where \"\".

\

\"\" and \"\".

\

Find the axis symmetry.

\

The equation of the axis symmetry is \"\".

\

\"\"                    (Substitute the values \"\" and \"\")

\

\"\"                                  (Simplify)

\

The axis symmetry is \"\".

\

\"\"

\

Make a table using \"\" values near \"\".

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Graph:

\

Plot the points obtained in the table.

\

Graph the function \"\":

\

\"\"

\

Observe the graph:

\

The graph touches the \"\"-axis at \"\" and \"\".

\

Therefore, the solutions of the equation are \"\" and \"\".

\

\"\"

\

The solutions of the equation are \"\" and \"\".