\"\"

\

The function is \"\".

\

Step 1: Find the zeros.

\

\"\"              (Set \"\")

\

\"\"                    (Determinant formula)

\

\"\"         (Substitute \"\", \"\" and \"\")

\

\"\"                       (Evaluate powers)

\

\"\"                   (Simplify)

\

Therefore the roots are imaginary.

\

There is no zero.

\

\"\"

\

Step 2: Find the asymptotes.

\

\"\"                                (Set \"\")

\

There is a vertical asymptote at \"\".

\

The degree of the numerator is greater than the degree of the denominator.

\

Thus, there is no horizontal asymptote.

\

The difference between the degree of the numerator and the degree of the denominator is \"\".

\

Thus there is an oblique asymptote.

\

\"\"

\

The equation of the asymptote is the quotient excluding any remainder.

\

Thus, the oblique asymptote is the line \"\".

\

\"\"

\

Step 3: Draw the asymptotes:

\

Make a table of values.

\ \
\ \
\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

Graph:

\

Graph the function \"\".

\

Plot the points obtained in the table.

\

\"\"

\

\"\"

\

Graph of  the function \"\".

\

\"\"