\"\"

\

The function is \"\".

\

Step 1: Find the zeros.

\

\"\"                            (Set \"\")

\

\"\"                      (Factors)

\

\"\"       (Take square on each side)

\

\"\" and \"\"

\

There is zero at \"\" and \"\".

\

\"\"

\

Step 2: Find the asymptotes.

\

\"\"                                     (Set \"\")

\

\"\"                         (Add \"\" to each side)

\

\"\"                                           (Apply additive inverse property: \"\")

\

\"\"                                    (Take cube root on each side)

\

\"\"                                       (Simplify)

\

There is a vertical asymptote at \"\".

\

The degree of the numerator is greater than the degree of the denominator.

\

Thus, there is no horizontal asymptote.

\

The difference between the degree of the numerator and the degree of the denominator is \"\".

\

Thus there is an oblique asymptote.

\

\"\"

\

The equation of the asymptote is the quotient excluding any remainder.

\

Thus, the oblique asymptote is the line \"\".

\

\"\"

\

Step 3: Draw the asymptotes:

\

Make a table of values.

\ \
\ \
\ \
\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

Graph:

\

Graph the function \"\".

\

Plot the points obtained in the table.

\

\"\"

\

\"\"

\

Graph of the function \"\" is

\

\"\".