\
\

Given

\

\"image\"

\

squaring on each side

\

\"image\"

\

from formula

\

\"image\"

\

we can write 

\

\"image\"

\

\"image\"

\

(since)

\

\"image\"

\

\"image\"

\

We have fomula

\

\"image\"

\

here

\

\"image\"

\

substitute in formula

\

 \"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

\"image\"

\

substract  trems of \ \

\

\"image\"

\

\"image\"

\

Take out common factor 2

\

\"image\"

\

We know that

\

\"image\"

\

\"image\"

\

Squaring on each side  

\

\"image\"

\

Hence it is proved that

\

\"image\"

\
\