1) 8sin^2(x)- 4cos(x)-3=0

\

8sin2(x) - 4cos(x) - 3 = 0

\

Note: sin2A + cos2A = 1 than sin2A = 1 - cos2A

\

8(1 - cos2x) - 4cos(x) - 3 = 0

\

Simplify

\

8 - 8cos2x - 4cos(x) - 3 = 0

\

- 8cos2x - 4cos(x) - 3 + 8 = 0

\

- 8cos2x - 4cos(x) + 5 = 0

\

Multiply each side by negative one.

\

8cos2x + 4cos(x) - 5 = 0

\

Let  cos(x) = t

\

Than

\

8t2 + 4t + 5 = 0

\

Quadratic formula \"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

 

\

\"\"

\

\"\"

\

But t = cos(x)

\

There fore

\

\"\"

\