\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

4) The inequality is \"\"

\ \

State the exclude values,These are the values for which denominator is zero.

\

The exclude value of the inequality is 8,30.

\ \

Solve the related equation \"\"

\

\"\"

\

\"\"

\

Solution of related equation x   = -11.

\ \

Draw the vertical lines at the exclude values and at the solution to separate the number line into intervals.

\

\"\"

\ \

Now test  sample values in each interval to determine whether values in the interval satisify the inequality.

\

Test interval   x - value      Inequality                                    Conclusion

\

(-∞, -11)        x =  -20 \"\"    True

\

(-11, 8)            x = 0     \"\"              False

\

(8, 30)             x = 10    \"\"         True

\

(30, ∞)           x = 35      \"\"           False

\

\"\"

\

The above conclude that the inequality is satisfied for all x - values in (-∞, -11) and (8, 30).

\

This implies that the solution  of  the  inequality\"\"is  the  interval (-∞, -11) and (8, 30) . as shown in Figure below. Note that the original inequality contains a “” symbol. This means that the solution set contain the endpoints of the test intervals are (-∞, 0) and(1/2, ∞)

\

  \ \ .