The inequalities are 3x + 2y ≤ 54, 4x + 5y ≤ 100, x ≥ 0 and y ≥ 0

\

Now graph the all of four constraints.

\ \

Now first inequality 3x + 2y ≤ 54.

\ \

3x + 2y ≤ 54

\

0 ≤ 54

\

The statement is true.

\ \

Similarly graph the other inequalities.

\ \

Test point (0, 0)

\

0  ≤ 100

\

Since the statement is true , shade the region contain point (0, 0).

\ \

Test point (1, 1)

\

1 ≥ 0

\

Since the statement is true , shade the region contain point (1, 1).

\ \

Test point (1, 1)

\

1 ≥ 0

\

Since the statement is true , shade the region contain point (1, 1).

\

Graph

\

\"\"

\

The feasible area looks like in the graph

\

\"\"

\

From the graph the corner points are (0, 0) ,(0, 20),(10, 12),(18, 0)

\

The function z = 15x + 10y

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Point \

Function z = 15x + 10y

\
\

Value

\
(0, 0) \

  z = 15(0) + 10(0) = 0

\
\

0

\
\

(0, 20)

\
\

z = 15(0) + 10(20) = 30

\
\

30

\
\

(10, 12)

\
\

z = 15(10) + 10(20) = 350

\
\

350(Maximum)

\
\

(18, 0)

\
\

z = 15(18) + 10(0) = 270

\
\

270

\
\

The maximum value is 350 at (10,12).