The inequalities are 3x + 2y ≤ 54, 4x + 5y ≤ 100, x ≥ 0 and y ≥ 0
\Now graph the all of four constraints.
\Now first inequality 3x + 2y ≤ 54.
\3x + 2y ≤ 54
\0 ≤ 54
\The statement is true.
\Similarly graph the other inequalities.
\Test point (0, 0)
\0 ≤ 100
\Since the statement is true , shade the region contain point (0, 0).
\Test point (1, 1)
\1 ≥ 0
\Since the statement is true , shade the region contain point (1, 1).
\Test point (1, 1)
\1 ≥ 0
\Since the statement is true , shade the region contain point (1, 1).
\Graph
\The feasible area looks like in the graph
\From the graph the corner points are (0, 0) ,(0, 20),(10, 12),(18, 0)
\The function z = 15x + 10y
\Point | \ \
Function z = 15x + 10y \ | \
\
Value \ | \
(0, 0) | \ \
z = 15(0) + 10(0) = 0 \ | \
\
0 \ | \
\
(0, 20) \ | \
\
z = 15(0) + 10(20) = 30 \ | \
\
30 \ | \
\
(10, 12) \ | \
\
z = 15(10) + 10(20) = 350 \ | \
\
350(Maximum) \ | \
\
(18, 0) \ | \
\
z = 15(18) + 10(0) = 270 \ | \
\
270 \ | \
The maximum value is 350 at (10,12).