The equation is xy * yx = 1. \ \

\

Differentiate the above equation with respect to x. \ \

\

[ xy * yx ] \\'  = 1\\' \ \

\

Use product rule differentiation formula : (uv) \\' = uv \\' + vu \\'. \ \

\

Derivative of constant is zero.

\

(xy)(yx) \\'  + (yx)(xy) \\' = 0

\

Let yx = m. \ \

\

Apply logarithm on each side.

\

ln yx = ln m

\

Apply power property of logarithm : loga(m)n = nloga(m).

\

x ln y = ln m

\

Apply derivative on each side.

\

(x ln y) \\' = (ln m) \\'

\

x (ln y) \\' + (ln y)(x) \\' = (ln m) \\'

\

Use the formula : (ln x) = 1/x.

\

x (1/y)y\\' + (ln y)(1) = (1/m)m\\'

\

(xy \\' / y) + ln y = (1/yx)(yx) \\'

\

(yx) \\' = [yx(xy \\' + y ln y)] / y