(1) \ \

\

Given polynomial  \"image\"

\

Step 1 :   Identify possible rational roots

\

Usually it is not practical to test all possible zeros of a polynomial function using only synthetic substitution. The Rational Zero Theorem can be used for finding the some possible zeros to test.

\

Rational Root Theorem, if a rational number in simplest form p/q is a root of the polynomial equation

\

 anx n + an  1x n – 1 + ... + a1x + a0 = 0, then p is a factor of a0 and q is a factor if an.

\

The function is x 3- 9x 2+ 26x - 24 = 0.

\

If p/q is a rational zero, then p is a factor of 1 and q is a factor of 24.

\

The possible values of p are  ± 1 , ± 2 , ± 3 , ± 4.

\

The possible values for q are ± 1. \ \

\

By the Rational Roots Theorem, the only possible rational roots are, p / q = ± 1,  ± 2, ± 3 and ± 4..

\

Step 2 :   Synthetic division

\

Make a table for the synthetic division and test possible real zeros.

\

Make a table for the synthetic division and test possible real zeros.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

p/q

\
\

1

\
\

- 9

\
\

26

\
\

-24

\
\

1

\
\

1

\
\

-8

\
\

18

\
\

-6

\
\

2

\
\

1

\
-7120
\

Since, f(2) = 0, x = 2 is a zero.

\

The depressed polynomial is  x 2 - 7x + 12 = 0.

\

Step 3 :   Factorisation

\

By factor by grouping.

\

x 2 - 3x - 4x + 24 = 0

\

x(x - 3) - 4(x - 3) = 0

\

Factor : (x - 3)(x - 4) = 0

\

Apply zero product property.

\

x - 3 = 0 and x - 4 = 0

\

x = 3 and x = 4.

\

Solution :

\

The roots of the function are x = 1, x = - 2, x = 3.