Mean value theorem :

\

If f is

\

(1) Continuous on closed interval [a,b] where a < b

\

(2) Differntiable on the open interval (a,b)

\

then there exist a point c in the(a,b) such that \"image\".

\

Step1 :

\

Given function \"image\".

\

(1) f(x) is continuous on closed interval [0,5] where 0 < 5

\

(2) f(x) is differntiable on the open interval (0,5)

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Step2 :

\

Condition 1 and 2 are satisfied

\

So there exist a point c in the (0,5) such that \"image\".

\

where a = 0, b = 5.

\

\"image\"

\

Substitute a = 0, b = 5.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Step3 :

\

\"\"

\

Apply formula

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute x = c

\

\"\"

\

Substitute \"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Solution :

\

The solution is c = 2  ,  -10