\

Step 1 :

\

Given functions

\

f(x) = 3x − 12

\

g(x) = 2x2 + 7x − 11

\

gof(x) = g [ f(x) ]

\

g [ 3x − 12 ]

\

2( 3x − 12 )2 + 7 ( 3x − 12 ) − 11

\

Apply formula : (a+b)2=a2+2ab+b2

\

2[ (3x)2 - 2(3x)(12) + (12)2 ] +  21x − 84 − 11

\

2[ 9x2 - 72x + 144 ] +  21x − 84 − 11

\

18x2 - 144x + 288 +  21x − 84 − 11

\

18x2 - 123x + 193

\

So (gof)(x) = 18x2 - 123x + 193

\

Step 2 :

\

(gof)(x) = 18x2 - 123x + 193

\

Substitute x = 4

\

(gof)(4) = 18(4)2 - 123(4) + 193

\

(gof)(4) = -11

\

Solution :

\

The solutio is (gof)(4) = -11

\