\

Give names to all vertices of triangle.

\

and draw dotted line from D to E (mid point of AB )

\

\"\"

\

From right angled triangle ABC

\

Apply Pythagorean triangle formula : AB² = AC²+BC²

\

But AC = BC is given

\

AB² = AC²+AC²

\

AB² = 2AC²

\

Substitute AB = 260

\

260² = 2AC²

\

AC² = 67600/2

\

AC = √33800

\

AC = 183.85 ft

\

From right angled triangle ACD

\

Apply Pythagorean triangle formula : AC² = AD²+CD²

\

183.85² = AD²+105²

\

AD² = 22775.8225

\

AD = 150.9166

\

From right angled triangle ADE

\

Apply Pythagorean triangle formula : AD² = DE²+AE²

\

150.9166² = DE²+(260/2)²

\

DE² = 150.9166² - 130²

\

DE² = 5875.82

\

DE = 76.65

\

Area of Orange Triangle ABD is ½(base)(height)

\

= ½(AB)(DE)

\

= ½(260)(76.65)

\

=  9965 square feet

\

Solution :

\

Area of Orange Triangle is 9965 square feet

\