Given equation : f(x) = 3x³ + ax² + bx - 8 = 0
\The quadratic factor = two factors = x² - 4
\x² - 4 = ( x - 2)(x + 2)
\two factors = ( x - 2)(x + 2)
\(x + 2) is factor of f(x).So substitute x = -2.
\f(-2) = 3(-2)³ + a(-2)² + b(-2) - 8 = 0
\-24 + 4a - 2b - 8 = 0
\4a - 2b = 32
\2a - b = 16
\b =2a - 16
\( x - 2) is factor of f(x).So substitute x = 2.
\f(2) = 3(2³) + a(2²) + b2 - 8 = 0
\24 + 4a + 2b - 8 = 0
\4a + 2b = -16
\2a + b = -8
\Substitute b = 2a - 16
\2a + 2a - 16 = -8
\4a = 8
\a = 2
\b = 2a - 16 = 2(2) - 16 = 4 - 16
\b = -12
\Solution is a = 2 and b = -12
\