\

2.2.2)

\

Given data

\

Diameter d = 500 mm

\

1 mm = (10-3) m

\

d = 500×10-3 m

\

d = 0.5 m

\

radius r = d/2

\

r = 0.5/2

\

r = 0.25 m

\

linear speed v = 200 km/h

\

1km/h = (5/18) m/s

\

v = 200 (5/18) m/s

\

v = 55.56 m/s

\

Angular velocity  ω = ?

\

The angular velocity is defined as the rate of change of angular displacement.

\

The number of revolutions per minute = (speed) / (circumference of wheel)

\

The number of revolutions per minute (rpm) = v / πd

\

= 55.56 / 0.5π

\

= 35.3857 rpm

\

Angular velocity  ω= rpm x (2π)/60

\

ω = 35.387 x (2π)/60

\

ω = 35.387 x (2π)/60

\

ω = 3.70 rad/s

\

Solution :

\

The angular velocity of wheel  is 3.7 rad/s

\