Cycling speed = 8 m/s \ \

\

Cycling direction = north \ \

\

Wind blowing speed =  3 m/s \ \

\

Wind direction = south-east \ \

\

The picture representation of problem is \ \

\

\"\" \ \

\

Consider \ \

\

a = OA = CB = Cycling speed = 8 m/s \ \

\

b = OB = AC = Wind speed = 3 m/s \ \

\

c = OC = relative speed \ \

\

Angle C = ∠AOC = ∠AOE + ∠BOE \ \

\

Angle C = 90 + 45 = 135o \ \

\

So the relative velocity can be calculated using cosine rule. \ \

\

\"Law

\

c² = 8² + 3² -2(8)(3) cos(45°)  \ \

\

c² = 64 +9 - 47.81 \ \

\

c² = 30.05 \ \

\

c = 6.25 m/s \ \

\

The relative velocity  is 6.25 m/s . \ \

\

The direction of two cars can be calculated using formula : . \ \

\ \ \ \ \ \ \ \ \ \ \ \
cos(AOC) \ \ = \ \ b2 + c2a2 \ \
2bc \ \
\ \ \ \ \ \ \ \ \ \ \ \
cos(AOC) \ \ = \ \ 6.252 + 82 – 32 \ \
2 × 6.25 × 8 \ \
\ \ \ \ \ \ \ \ \ \ \ \
cos(AOC) \ \ =94.0625 \ \
100 \ \
\

cos(AOC) = 0.94 \ \

\

AOC = 19.8o \ \

\

the resultant velocity of the cyclist in direction is 16.58° right side to north side. \ \

\

Solution : \ \

\

The relative velocity  is 6.25 m/s . \ \

\

the resultant velocity of the cyclist in direction is 16.58° right side to north side.