1.3.1) \ \
\Destination distance = 600 km in west direction. \ \
\Destination time td= 55 minutes \ \
\td= 55/60 = 0.917 hr \ \
\Wind blowing speed vw= 75 m/s in north-west direction. \ \
\vw= 75 * 3.6 = 270 km/hr \ \
\∠COA = Relative angle \ \
\Speed of flight = distance / time = 600 / 0.917 = 654 km/hr \ \
\OA = 645 km/hr \ \
\OB = 270 km/hr \ \
\Resultant speed DE² = OA² + OB² - 2 OA OB cos45 \ \
\DE² = 645² + 270² - 2 (270)(645) cos45 \ \
\DE² = 645² + 270² - 2 (270)(645) cos45 \ \
\DE = 492.58 km/hr \ \
\For parallelogram
\(diagonal1)² + (diagonal2)² = (side1 + side2)² \ \
\(DE)² + (OC)² = (OE + OD)² \ \
\(OC)² = ( 645 + 270 )² - 492.58² \ \
\OC = 771.5 km/hr. \ \
\From OAC right angled triangle \ \
\cosθ = OA/OC \ \
\cosθ = 645/771.5 \ \
\cosθ = 0.836 \ \
\θ = 33.3o \ \
\Solution :
\Direction of the velocity of plane relative to the velocity of ground is 33.3° upside inclined to west
\