\

1.3.2)

\

Destination distance = 600 km in west direction.

\

Destination time td= 55 minutes

\

td= 55/60 = 0.917 hr

\

Wind  blowing speed vw=   75 m/s in north-west direction.

\

vw=   75 * 3.6 = 270 km/hr

\

∠COA = Relative angle

\

Speed of flight = distance / time = 600 / 0.917 = 654 km/hr

\

OA = 645 km/hr

\

OB = 270 km/hr

\

Resultant speed DE² = OA² + OB² - 2 OA OB cos45

\

DE² = 645² + 270² - 2 (270)(645) cos45

\

DE² = 645² + 270² - 2 (270)(645) cos45

\

DE = 492.58 km/hr

\

For parallelogram

\

(diagonal1)² + (diagonal2)² = (side1 + side2)²

\

(DE)² + (OC)² = (OE + OD)²

\

(OC)² = ( 645 + 270 )² - 492.58²

\

OC = 771.5 km/hr.

\ Solution : \

the velocity of the aircraft with respect to the ground is 771.5 km/hr

\