1.3.2)
\Destination distance = 600 km in west direction.
\Destination time td= 55 minutes
\td= 55/60 = 0.917 hr
\Wind blowing speed vw= 75 m/s in north-west direction.
\vw= 75 * 3.6 = 270 km/hr
\∠COA = Relative angle
\Speed of flight = distance / time = 600 / 0.917 = 654 km/hr
\OA = 645 km/hr
\OB = 270 km/hr
\Resultant speed DE² = OA² + OB² - 2 OA OB cos45
\DE² = 645² + 270² - 2 (270)(645) cos45
\DE² = 645² + 270² - 2 (270)(645) cos45
\DE = 492.58 km/hr
\For parallelogram
\(diagonal1)² + (diagonal2)² = (side1 + side2)²
\(DE)² + (OC)² = (OE + OD)²
\(OC)² = ( 645 + 270 )² - 492.58²
\OC = 771.5 km/hr.
\ Solution : \the velocity of the aircraft with respect to the ground is 771.5 km/hr
\