\

1)

\

Given Data :

\

Orifice diameter d = 52 mm

\

do = 52/1000 = 0.052 m

\

Pressure head H = 4.5 m

\

Diameter of the vena contracta dv = 41 mm

\

dv = 41/1000 = 0.041 m

\

The horizontal distance of the water jet x = 2.15 m

\

The vertical distance of the water jet y = 327 mm

\

y = 327/1000 = 0.327 m

\

The theoretical flow velocity vt = √(2gH)

\

Substitute H = 4.5 m and g = 9.8

\

vt = √(2*9.8*4.5)

\

vt = 9.39 m/s

\

Orifice area A  = do²/4

\

Ao= (0.052)²/4

\

Ao = 0.000676 m²

\

Area at vena contracta Av = dv²/4

\

Av = 0.041²/4

\

Av = 0.00042 m²

\

The coefficient of velocity Cv = Av / Ao

\

Cv = 0.00042/ 0.000676

\

Cv = 0.621

\

The coefficient of contraction Cc = x / √(4yH) = va / vt

\

Cc = x / √(4yH)

\

Substitute  x = 2.15 and y = 0.327 m

\

Cc = 2.15 / √(4*0.327*4.5)

\

Cc = 0.8862

\

Theoretical delivery of water Qt = Aovt

\

Substitute Ao = 0.000676 and vt = 9.39

\

Qt = (0.000676)(9.39)

\

Qt = 0.00635

\

The coefficient of delivery Cd = Cv Cc = Qa / Qt

\

Cd = Cv Cc

\

Cd = 0.621*0.8862

\

Cd = 0.621*0.8862

\

Cd = 0.55

\

The coefficient of delivery Cd =  Qa / Qt

\

The actual delivery of the water Qa = Cd * Qt

\

Qa = 0.55 * 0.0635

\

Qa = 0.035

\

The coefficient of contraction Cc = va / vt

\

Actual flow velocity va = Cc * vt

\

va =0.8862 * 9.39

\

va = 8.32 m/s

\

Solution : \ \

\

vt = 9.39 m/s

\
\

va = 8.32 m/s

\

Qt = 0.00635

\

Qa = 0.035

\

Cd = 0.55

\

Cv = 0.621

\

Cc = 0.8862