2.2 )
\Tapered pipe line length l = 10.5 m
\Inclination angle θ = 35o
\Water density ρ = 1000 kg/m3
\Large diameter d1= 350 mm
\d1 = 350/1000 = 0.35 m
\Small diameter d2= 300 mm
\d2= 300/1000 = 0.3 m
\Flow rate of water Q = 130 litres per second
\Liter per second = 0.0010 m3/sec
\Q = 130*0.001 = 0.13 m3/sec
\Pressure at the small diameter p2 = 125 kPa
\The change in kinetic energy per KE = ?
\A1 = (¼)πd1²
\A1 = (¼)π(0.35²)
\A1 = 0.0962
\A₂ = (¼)πd2²
\A₂ = (¼)π(0.3²)
\A₂ = 0.0707
\Q = A1V1 = A₂V₂
\V1 = Q / A1 = 0.13 / 0.0962
\V1 = 1.351 m/s
\V₂ = Q / A2 = 130 / 0.0707
\V₂ = 1.839 m/s
\θ = 35o
\l = 10.5 m
\Consider z1 = 0 m ( Large diameter side is taken as datum )
\Then from figure z₂ = 10.5 sin35o
\z₂ = 6.02 m
\From Bernoulli Equation : (p1/ρg)+((v1)²/2g) + z1 = (p2/ρg)+((v2)²/2g) + z2
\Substitute p2= 125k , ρ =1000 , g = 9.8 , z1 = 0 , V1 = 1.351 , V₂ = 1.839 , z2 = 6.02
\(p1/(1000)(9.8))+((1.351)²/2*9.8) + 0 = (125000/(1000)(9.8))+((1.839)²/2*9.8) + 6.02
\(p1/9800) + 0.093 = 12.755 + 0.1725 + 6.02
\(p1/980) = 18.8545
\p1 = 184.77 kPa
\From Bernoulli Equation : (p1/ρg)+((v1)²/2g) + z1 = (p2/ρg)+((v2)²/2g) + z2
\Substitute KE1 = (v1)²/2g and KE₂ = (v2)²/2g
\(p1/ρg)+ KE1 + z1 = (p2/ρg)+ KE₂ + z2
\Substitute p1 = 184.77k , p2= 125k , ρ =1000 , g = 9.8 , z1 = 0 , z2 = 6.02
\(184770/(1000)(9.8))+ KE1 + 0 = (125000/(1000)(9.8))+ KE₂ + 6.02
\KE₂ - KE1 = (184770 - 125000/(1000)(9.8)
\KE₂ - KE1 = 6.098979
\The change in kinetic energy KE = | KE₂ - KE1 |
\= | 6.1 |
\= 6.1 J
\The change in kinetic energy is 6.1 Joules