4.2 )

\

Tapered pipe line length l = 10.5 m

\

Inclination angle θ = 35o

\

Water density ρ = 1000 kg/m3

\

Large diameter d1= 350 mm

\

d1 = 350/1000 = 0.35 m

\

Small diameter d2=  300 mm

\

d2=  300/1000 = 0.3 m

\

Flow rate of water Q = 130 litres per second

\

Liter per second = 0.0010 m3/sec

\

Q = 130*0.001 = 0.13 m3/sec

\

Pressure at the small diameter  p2 = 125 kPa

\

The change in kinetic energy per KE = ?

\

\"\"

\

A1 = (¼)πd1²

\

A1 = (¼)π(0.35²)

\

A1 = 0.0962

\

A₂  = (¼)πd2²

\

A₂  = (¼)π(0.3²)

\

A₂  = 0.0707

\

Q = A1V1 = A₂V₂

\

V1 = Q / A1 = 0.13 / 0.0962

\

V1 = 1.351 m/s

\

V₂ = Q / A2 = 130 / 0.0707

\

V₂ =  1.839 m/s

\

θ = 35o

\

l = 10.5 m

\

Consider z1 = 0 m ( Large diameter side is taken as datum )

\

Then from figure z₂ = 10.5 sin35o

\

z₂ = 6.02 m

\

From Bernoulli Equation : (p1/ρg)+((v1)²/2g) + z1 = (p2/ρg)+((v2)²/2g) + z2

\

Substitute p2= 125k , ρ =1000 , g = 9.8 ,  z1 = 0 , V1 = 1.351 , V₂ =  1.839 , z2 = 6.02

\

(p1/(1000)(9.8))+((1.351)²/2*9.8) + 0 = (125000/(1000)(9.8))+((1.839)²/2*9.8) + 6.02

\

(p1/9800) + 0.093 = 12.755 + 0.1725 + 6.02

\

(p1/980) = 18.8545

\

p1 = 184.77 kPa

\

From Bernoulli Equation : (p1/ρg)+((v1)²/2g) + z1 = (p2/ρg)+((v2)²/2g) + z2

\

Substitute KE1 = (v1)²/2g and KE₂ = (v2)²/2g

\

(p1/ρg)+ KE1 + z1 = (p2/ρg)+ KE₂ + z2

\

Substitute p1 = 184.77k , p2= 125k , ρ =1000 , g = 9.8 , z1 = 0 , z2 = 6.02

\

(184770/(1000)(9.8))+ KE1 + 0 = (125000/(1000)(9.8))+ KE₂ + 6.02

\

KE₂ - KE1 = (184770 - 125000/(1000)(9.8)

\

KE₂ - KE1 = 6.098979

\

The change in kinetic energy KE = | KE₂ - KE1 |

\

= | 6.1 |

\

= 6.1 J

\

The change in kinetic energy is 6.1 Joules

\