Given function f(x,y) = e(−x²−y²)

\

Step 1 :

\

First partial derivatives : fx(x,y) and fy(x,y)

\

fx(x,y) = (∂/∂x)f(x,y)

\

fx(x,y) = (∂/∂x)e(−x²−y²)

\

= e(−x²−y²)(∂/∂x)(−x²−y²)

\

= e(−x²−y²)(−2x−0)

\

= −2xe(−x²−y²)

\

fy(x,y) = (∂/∂y)f(x,y)

\

fy(x,y) = (∂/∂y)e(−x²−y²)

\

= e(−x²−y²)(∂/∂y)(−x²−y²)

\

= e(−x²−y²)(−0−2y)

\

= −2ye(−x²−y²)

\

Step 2 :

\

Evaluation of the first partial derivatives : fx(0,0) and fy(0,0)

\

fx(x,y) = −2xe(−x²−y²)

\

Substitute x=0 , y=0

\

fx(0,0) = −2(0)e(−0²−0²)

\

fx(0,0) = 0

\

fy(x,y) = −2ye(−x²−y²)

\

Substitute x=0 , y=0

\

fy(0,0) = −2(0)e(−0²−0²)

\

fy(0,0) = 0

\

Step 3 :

\

The second partial derivatives : fxx(x,y),fyy(x,y) andfxy(x,y)

\

fxx(x,y) = (∂/∂x)fx(x,y)

\

fxx(x,y) = (∂/∂x)(−2xe(−x²−y²))

\

= ((-2x)e(−x²−y²)(−2x−0))+(−2e(−x²−y²))

\

= ((4x²)e(−x²−y²))+(−2e(−x²−y²))

\

= ((4x²-2)e(−x²−y²))

\

= 2(2x²-1)e(−x²−y²)

\

fxy(x,y) = (∂/∂y)fx(x,y)

\

fxy(x,y) = (∂/∂y)(−2xe(−x²−y²))

\

= ((-2x)e(−x²−y²)(−0−2y))+(−2e(−x²−y²))(0)

\

= 4xye(−x²−y²)

\

fyy(x,y) = (∂/∂y)fy(x,y)

\

fyy(x,y) = (∂/∂y)(−2ye(−x²−y²))

\

= ((-2y)e(−x²−y²)(−0−2y))+(−2e(−x²−y²))(1)

\

= ((4y²)e(−x²−y²))+(−2e(−x²−y²))

\

= ((4y²-2)e(−x²−y²))

\

= 2(2y²-1)e(−x²−y²)

\

Solution :

\

First partial derivatives :

\

fx(x,y) = −2xe(−x²−y²)

\

fy(x,y) = −2ye(−x²−y²)

\

fx(0,0) = 0

\

fy(0,0) = 0

\

The second partial derivatives :

\

fxx(x,y) = 2(2x²-1)e(−x²−y²)

\

fxy(x,y) = 4xye(−x²−y²)

\

fyy(x,y) =  2(2y²-1)e(−x²−y²)