Given function f(x,y) = e(−x²−y²)
\Step 1 :
\First partial derivatives : fx(x,y) and fy(x,y)
\fx(x,y) = (∂/∂x)f(x,y)
\fx(x,y) = (∂/∂x)e(−x²−y²)
\= e(−x²−y²)(∂/∂x)(−x²−y²)
\= e(−x²−y²)(−2x−0)
\= −2xe(−x²−y²)
\fy(x,y) = (∂/∂y)f(x,y)
\fy(x,y) = (∂/∂y)e(−x²−y²)
\= e(−x²−y²)(∂/∂y)(−x²−y²)
\= e(−x²−y²)(−0−2y)
\= −2ye(−x²−y²)
\Step 2 :
\Evaluation of the first partial derivatives : fx(0,0) and fy(0,0)
\fx(x,y) = −2xe(−x²−y²)
\Substitute x=0 , y=0
\fx(0,0) = −2(0)e(−0²−0²)
\fx(0,0) = 0
\fy(x,y) = −2ye(−x²−y²)
\Substitute x=0 , y=0
\fy(0,0) = −2(0)e(−0²−0²)
\fy(0,0) = 0
\Step 3 :
\The second partial derivatives : fxx(x,y),fyy(x,y) andfxy(x,y)
\fxx(x,y) = (∂/∂x)fx(x,y)
\fxx(x,y) = (∂/∂x)(−2xe(−x²−y²))
\= ((-2x)e(−x²−y²)(−2x−0))+(−2e(−x²−y²))
\= ((4x²)e(−x²−y²))+(−2e(−x²−y²))
\= ((4x²-2)e(−x²−y²))
\= 2(2x²-1)e(−x²−y²)
\fxy(x,y) = (∂/∂y)fx(x,y)
\fxy(x,y) = (∂/∂y)(−2xe(−x²−y²))
\= ((-2x)e(−x²−y²)(−0−2y))+(−2e(−x²−y²))(0)
\= 4xye(−x²−y²)
\fyy(x,y) = (∂/∂y)fy(x,y)
\fyy(x,y) = (∂/∂y)(−2ye(−x²−y²))
\= ((-2y)e(−x²−y²)(−0−2y))+(−2e(−x²−y²))(1)
\= ((4y²)e(−x²−y²))+(−2e(−x²−y²))
\= ((4y²-2)e(−x²−y²))
\= 2(2y²-1)e(−x²−y²)
\Solution :
\First partial derivatives :
\fx(x,y) = −2xe(−x²−y²)
\fy(x,y) = −2ye(−x²−y²)
\fx(0,0) = 0
\fy(0,0) = 0
\The second partial derivatives :
\fxx(x,y) = 2(2x²-1)e(−x²−y²)
\fxy(x,y) = 4xye(−x²−y²)
\fyy(x,y) = 2(2y²-1)e(−x²−y²)